Cell to cell interactions influence sensitivity of liver cell lines during hyperthermia.

نویسندگان

  • Ursula Mayrhauser
  • Philipp Stiegler
  • Vanessa Stadlbauer
  • Sonja Koestenbauer
  • Bettina Leber
  • Katja Konrad
  • Florian Iberer
  • Karlheinz Tscheliessnigg
چکیده

BACKGROUND Thermal cancer therapy is used for hepatocellular carcinoma treatment. In this study we investigated the effect of hyperthermia on liver cells and compared data of our different cell culture fibrosis models (transwell vs. co-culture model). MATERIALS AND METHODS The cell lines HepG2 and LX-1 were seeded in different numbers in transwells to simulate different grades of fibrosis and then heated from 55°C to 85°C for different time spans. Thereafter, metabolic activity was measured. RESULTS Heating at 65°C showed that the greater the number of LX-1 cells treated together with HepG2 cells the lower the metabolic activity of HepG2 cells was. Compared to our previous co-culture study, there were significantly different results in cell survival from 55°C to 75°C. CONCLUSION The co-culture fibrosis model is more physiological than the transwell model because it allows a higher seeding density and a higher degree of cell to cell interactions. Therefore, it is more efficient for investigating the effect of hyperthermia on liver cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperthermia Increases Natural Killer Cell Cytotoxicity against SW-872 Liposarcoma Cell Line

Background: Although there is convincing data in support of the effectiveness of hyperthermia in tumor therapy, the molecular mechanisms underlying the clinical effects of hyperthermia are still poorly understood. Objective: To investigate natural killer (NK) cell cytotoxicity against heat-treated SW-872 and HeLa tumor cell lines. Methods: NKG2D ligands and HLA class I transcription were examin...

متن کامل

THE EFFECT OF HYPERTHERMIA ON THE DIFFERENTIATION OF LEUKEMIC CELL LINES

Treatment of human promonocytic leukemic cell line U937 with mild hyperthermia in the temperature range of 40-43°C resulted in differentiation of these cells into monocyte/macrophage-like cells in a heat dose and time dependent manner. This process was accompanied by marked morphological, functional and proliferational changes. U937 cells which normally grow in supension in the logarithmic...

متن کامل

The Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent

Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...

متن کامل

The Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent

Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...

متن کامل

Synergistic effects of Radiofrequency Hyperthermia temperature rate with magnetic Graphene oxide nanoparticles drug targeting on CT26 colon cancer cell line

Introduction: Graphene oxide (GO) sheets are carbon-networking nanomaterials offering excellent potential for drug delivery platforms due to hydrophobic interactions and high drug-loading efficiency. Superparamagnetic iron oxide nanoparticles can be used in certain applications such as cell labeling, drug delivery, targeting, magnetic resonance imaging and hyperthermia. Due t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Anticancer research

دوره 31 11  شماره 

صفحات  -

تاریخ انتشار 2011